Université de Nice Sophia Antipolis

Licence L2 - Géométrie

Année 2014 - 2015 (Semestre 4)

Feuille de TD 2

Exercice 1. (intersection de deux plans affines dans un espace affine de dimension 4) Soit X un espace affine de dimension 4. Que peut-on obtenir en intersectant deux plans affines non parallèles dans X?

Exercice 2. (théorème des milieux) Soient A, B, C trois points non alignés dans un plan affine \mathcal{P} (de corps de base \mathbb{Q} , \mathbb{R} ou \mathbb{C}). On note I le milieu de [AB] et J le milieu de [AC]. Montrer que les droites BC et IJ sont parallèles.

Exercice 3. (transitivité de la relation "être parallèle") Soient M_1, M_2, M_3, M_4 quatre points d'un espace affine X de dimension au moins 2. On suppose que l'on ne peut extraire de ces quatre points, trois points alignés. On note I_1 le milieu de $[M_1M_2]$, I_2 le milieu de $[M_2M_3]$, I_3 le milieu de $[M_3M_4]$, I_4 le milieu de $[M_4M_1]$.

- 1. Montrer que les droites I_1I_2 et I_3I_4 sont parallèles.
- 2. Monter que $I_1I_2I_3I_4$ est un parallélogramme.
- 3. Faire un dessin illustratif pour le cas où (M_1, M_2, M_3, M_4) est un repère affine de \mathbb{R}^3 .

Exercice 4. (calculer dans un repère)

Dans un plan affine \mathcal{P} muni d'un repère cartésien $\mathcal{R} = (O, \vec{i}, \vec{j})$, on considère la droite \mathcal{D} d'équation 3x + 2y - 5 = 0, les points A et B de coordonnées respectives (2, -3) et (3, -2). Soient \vec{u} et \vec{v} les vecteurs de $\vec{\mathcal{P}}$ définis par $\vec{u} = 2\vec{i} - \vec{j}$, $\vec{v} = -3\vec{i} + 2\vec{j}$.

- 1. Quelles sont les coordonnées du point B dans le repère $\mathcal{R}' = (A, \vec{u}, \vec{v})$?
- 2. Donner une équation cartésienne de la droite \mathcal{D} dans le repère $\mathcal{R}' = (A, \vec{u}, \vec{v})$.

Exercice 5. (tracer dans un plan: une droite, un parallélogramme) Soit X est un espace affine réel de dimension 3 muni d'un repère cartésien $\mathcal{R} = (O, \vec{i}, \vec{j}, \vec{k})$. On note (x, y, z) les coordonnées d'un point M de X dans le repère \mathcal{R} et on considère \mathcal{P} , le plan d'équation x - 2y + 3z - 2 = 0.

- 1. Soient M_0 le point de coordonnées (1,1,1) et \mathcal{D} la droite passant M_0 et de vecteur directeur $\vec{v} = \vec{i} + 2\vec{j} + \vec{k}$. Expliquer pourquoi la droite \mathcal{D} est contenue dans le plan \mathcal{P} .
- 2. Trouver sur le plan \mathcal{P} , quatre points non alignés A,B,C et D tels que ABCD soit un parallélogramme (rappel: $\overrightarrow{AB} = \overrightarrow{DC}$).

Exercice 6. (écrire une application affine dans un repère)

Soient A, B, C trois points non alignés dans un plan affine réel $\mathcal{P}, f: \mathcal{P} \longrightarrow \mathcal{P}$ l'application affine définie par f(A) = B, f(B) = C, f(C) = A.

- 1. Quelle est la matrice de \vec{f} dans la base $(\overrightarrow{AB}, \overrightarrow{AC})$ de \vec{P} ?
- 2. Pour $M \in \mathcal{P}$, on note (x, y) les coordonnées de M dans le repère cartésien $\mathcal{R} = (A, \overrightarrow{AB}, \overrightarrow{AC})$. Donner, en fonction de (x, y), les coordonnées (x', y') de f(M) dans ce même repère \mathcal{R} .
- 3. Que peut-on dire de $f^3 = f \circ f \circ f$?
- 4. Résoudre l'équation (d'inconnue M) f(M) = M et placer la solution dans un dessin.

Exercice 7. (à la recherche d'un triangle dont les milieux sont fixés) A_1, A_2, A_3 sont trois points non alignés d'un plan affine réel \mathcal{P} . On veut:

- (*) Trouver dans le plan \mathcal{P} , un triangle $M_1M_2M_3$ tel que les points A_1, A_2 , et A_3 soient respectivement les milieux des segments $[M_1M_2]$, $[M_2M_3]$ et $[M_3M_1]$.
 - 1. Supposons que $M_1M_2M_3$ est un triangle répondant à la question (*). Que peut-on dire du vecteur $\overrightarrow{M_1M_2}$?
 - 2. Soient \mathcal{D}_1 la parallèle à (A_2A_3) par A_1 , \mathcal{D}_2 la parallèle à (A_3A_1) par A_2 , \mathcal{D}_3 la parallèle à (A_1A_2) par A_3 . \mathcal{D}_3 et \mathcal{D}_1 sont sécantes en A, \mathcal{D}_1 et \mathcal{D}_2 sécantes en B, \mathcal{D}_2 et \mathcal{D}_3 sécantes en C. Faire un dessin de la configuration et montrer que le triangle ABC répond à la question (*).
 - 3. Combien y a-t-il de triangles $M_1M_2M_3$ répondant à la question (*)?

4. Expliquez comment répondre à la question (*) en utilisant un repère.