Définition 2.4. (Intégrabilité au sens de Riemann) Une fonction réelle $f:[a,b] \longrightarrow \mathbb{R}$ est dite intégrable sur [a, b], si

 $\forall \epsilon > 0, \exists f_1, f_2 : [a, b] \longrightarrow \mathbb{R}$ fonctions en escaliers telles que:

1.
$$f_1 \leqslant f \leqslant f_2$$
 (i.e. $\forall x \in [a, b], f_1(x) \leqslant f(x) \leqslant f_2(x)$)

$$2. \left| \int_a^b f_2(x) dx - \int_a^b f_1(x) dx \right| < \epsilon$$

Théorème 2.5. (Intégrale définie) On suppose que la fonction réelle $f:[a,b] \longrightarrow \mathbb{R}$ est intégrable sur [a,b]. Considérons alors une subdivision régulière $a=x_0 < x_1 < \cdots < x_{n-1} < x_n = b \ (n\geqslant 2)$ de pas $h=x_1 < x_1 < \cdots < x_n <$ $\frac{b-a}{n} = x_i - x_{i-1} \ (1 \leqslant i \leqslant n) \ et \ posons \ I_n = \sum_{i=1}^n f(x_{i-1}) \ (x_i - x_{i-1}).$ Alors la suite réelle de terme générale I_n converge dans $\mathbb R$ et sa limite, notée

 $\int_a^b f(x) dx \text{ est appelée intégrale définie de } f \text{ sur } [a, b].$

Dans ce cours nous intéresserons essentiellement aux fonctions continues et aux fonctions continues par morceaux, définies sur un intervalle fermé borné [a,b] de \mathbb{R} .

Définition 2.6. On dit que la fonction $f:[a,b] \longrightarrow \mathbb{R}$ est continue par morceaux si f est bornée et l'ensemble des points de discontinuité de f est de cardinal fini.

Nous admettrons et utiliserons souvent le théorème suivant:

Théorème 2.7. Soit [a,b] un intervalle fermé borné de \mathbb{R} . Alors toute fonction continue $f:[a,b] \longrightarrow \mathbb{R}$ est intégrable sur [a,b].

Note 2.8. Dans l'expression $\int_a^b f(x) dx$, a et b sont les bornes d'intégration, x est la variable d'intégration. gration; c'est une variable muette. Elle peut donc être remplacée par toute autre variable, à l'exception de celles des bornes d'intégration et bien sûr de la variable utilisée pour nommée la fonction. Ainsi, si f: $[a,b] \longrightarrow \mathbb{R}$ est intégrable sur [a,b], on a les égalités suivantes:

$$\int_a^b f(x) d\mathbf{x} = \int_a^b f(t) d\mathbf{t} = \int_a^b f(u) d\mathbf{u} = \int_a^b f(v) d\mathbf{v} = \int_a^b f(y) d\mathbf{y}.$$

2.2 Quelques propriétés des intégrales définies

On suppose dans la liste des propriétés ci-dessous que [a, b] est un intervalle fermé borné de \mathbb{R} , f et gsont des fonctions intégrables sur [a, b].

- f(x)dx = 01. Quand les bornes d'intégration sont confondues:
- 2. La relation de Chasles: f(x)dx + $\forall c \in [a, b],$ f(x)dx
- 3. Quand on permute les bornes d'intégration: f(x)dx = -
- 4. La linéarité:

i.
$$\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

ii.
$$\forall \lambda \in \mathbb{R}, \int_a^b (\lambda f)(x) dx = \lambda \int_a^b f(x) dx$$

5. Quand le graphe d'une des fonctions est toujours au dessus de l'autre:

Si
$$f \leq g$$
 sur $[a, b]$, alors $\int_a^b f(x) dx \leq \int_a^b g(x) dx$

6. Comparaison de la valeur absolue de l'intégrale et de l'intégrale de la valeur absolue:

$$\left| \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f(x)| dx$$

2.3 Primitives: calcul d'intégrales définies

Souvent, dans la pratique, calculer une intégrale définie se ramènera pour nous, à chercher une primitive pour la fonction à intégrer.

Définition 2.9. Soit $f: [a, b] \longrightarrow \mathbb{R}$ une fonction réelle. On appelle primitive de f, toute fonction dérivable F définie sur [a, b] et vérifiant F' = f.

Exemple 2.10.

- Sur l'intervalle [-2,3], la fonction F définie par $F(x) = -\cos(x)$ est une primitive de la fonction f définie sur [-2,3] par $f(x) = \sin(x)$.
- Sur \mathbb{R} , la fonction $x \mapsto -\frac{1}{2}x^2$ est une primitive de $f: x \mapsto -x$; la fonction $x \mapsto -\frac{1}{2}x^2 + 7$ en est une autre.

Théorème 2.11. Si la fonction $f: [a, b] \longrightarrow \mathbb{R}$ admet une primitive F, alors les primitives de f sont toutes les fonctions G de la forme $G = F + \lambda$ pour λ parcourant \mathbb{R} .

Corollaire 2.12. Soient $f:[a,b] \longrightarrow \mathbb{R}$ une fonction réelle supposée admettre une primitive $F, x_0 \in [a,b]$ et $y_0 \in \mathbb{R}$. Alors il existe une et une seule primitive de f prenant la valeur y_0 en x_0 .

Exemple 2.13. Soit $f: [-2,2] \longrightarrow \mathbb{R}$ définie par f(x) = -x. f admet une unique primitive F, prenant la valeur 3 en 1. Pour déterminer F, on écrit que toute primitive de f est de la forme $F(x) = -\frac{1}{2}x^2 + \lambda$ où λ est une constante réelle. La condition F(1) = 3 fixe la valeur de la constante λ . F(1) = 3 si et seulement si $\lambda = \frac{7}{2}$. Conclusion: $F(x) = \frac{1}{2}(-x^2 + 7)$.

Note 2.14. Une primitive (quelle qu'elle soit) de $f:[a,b] \longrightarrow \mathbb{R}$ est aussi appelée intégrale indéfinie de f et est notée $\int f(x) dx$ (noter l'absence de bornes).

Remarque 2.15. (conséquence de la linéarité de la dérivation)

- 1. Pour deux fonctions $f, g: [a, b] \longrightarrow \mathbb{R}$, si F et G sont des primitives respectives de f et g, alors la somme (F+G) est une primitive de (f+g).
- 2. Si f est une primitive de f, alors pour tout réel λ , (λF) est une primitive de (λf) .

Théorème 2.16. (théorème de la moyenne) $Soit \ f\colon [a,b] \longrightarrow \mathbb{R}$ une fonction réelle continue sur [a,b]. Il existe un point $c\in [a,b]$ tel que $f(c)=\frac{1}{b-a}\int_a^b f(x)\mathrm{d}x$. (Le nombre réel $\frac{1}{b-a}\int_a^b f(x)\mathrm{d}x$ est la moyenne de la fonction f sur l'intervalle [a,b]).

En utilisant le théorème de la moyenne on peut prouver le théorème fondamental suivant:

Théorème 2.17. Soit $f: [a,b] \longrightarrow \mathbb{R}$ une fonction réelle continue sur [a,b]. Etant donné un point $x_0 \in [a,b]$, l'application $F: [a,b] \longrightarrow \mathbb{R}$ définie par $F(x) = \int_{x_0}^x f(t) dt$ est une primitive de f. Cette primitive s'annule en x_0 .

Dans la pratique, c'est le corollaire suivant que l'on applique pour calculer l'intégrale définie d'une fonction dont on connaît une primitive.

Théorème 2.18. Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction réelle continue sur [a,b]. Si F est une primitive de f, alors on a $\int_a^b f(x) dx = F(b) - F(a)$.

2.4 Techniques d'intégration

Dans ce paragraphe, on décrit les techniques de base à maîtriser pour mener à bien le calcul d'une intégrale définie.

2.4.1 Primitives de fonctions usuelles

La liste de primitives de fonctions usuelles à connaître:

Primitives de quelques fonctions usuelles $(\lambda \text{ est une constante r\'eell}$
1) pour $\alpha \in \mathbb{R}$, $\alpha \neq -1$, on a $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + \lambda$
$2) \int \frac{1}{x} dx = \ln x + \lambda$
3) pour $\alpha \in \mathbb{R}$, $\alpha \neq 0$, on a $\int e^{\alpha x} dx = \frac{1}{\alpha} e^{\alpha x} + \lambda$
4) pour un réel a strictement positif et différent de 1, $\int a^x dx = \frac{a^x}{\ln(a)} + \lambda$
5) $\int \sin(x) dx = -\cos(x) + \lambda$
6) $\int \cos(x) dx = \sin(x) + \lambda$

2.4.2 Technique d'intégration par parties

La technique d'intégration par parties est fondée sur la formule de dérivation d'un produit de fonctions $(u \times v)' = u' \times v + u \times v'$ dérivables:

Théorème 2.19. Soient u et v deux fonctions réelles continûment dérivables (i.e. des fonctions dérivables et dont les dérivées sont continues) sur un intervalle I.

Alors la fonction réelle produit $u' \times v$ admet une primitive sur I et on a:

1.
$$\int (u' \times v)(x) dx = (u \times v)(x) - \int (u \times v')(x) dx$$

2. si a et b sont deux points de I,
$$\int_{a}^{b} (u' \times v)(x) dx = [(u \times v)(x)]_{a}^{b} - \int_{a}^{b} (u \times v')(x) dx$$
 (dans cette formule, $[(u \times v)(x)]_{a}^{b}$ désigne $(u(b) \times v(b) - u(a) \times v(a))$

Exemple 2.20.

1. Calculer une primitive de la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = xe^{\alpha x}$ où α est un nombre réel non nul.

Solution:

- a) On pose $u'(x) = e^{\alpha x}$ et v(x) = x, ce qui donne par exemple $u(x) = \frac{1}{\alpha}e^{\alpha x}$ en utilisant les formules des primitives des fonctions usuelles. On a v'(x) = 1.
- b) En utilisant le a) et la technique d'intégration par parties, on obtient:

$$\int x e^{\alpha x} dx = \frac{1}{\alpha} x e^{\alpha x} - \int 1 \times \left(\frac{1}{\alpha} e^{\alpha x}\right) dx.$$
On en déduit
$$\int x e^{\alpha x} dx = \frac{1}{\alpha} x e^{\alpha x} - \frac{1}{\alpha^2} e^{\alpha x} + \lambda, \text{ où } \lambda \text{ est une constante réelle quelconque.}$$

2. Calculer une primitive de la fonction $f: [0, +\infty[\longrightarrow \mathbb{R}, f(x) = \ln(x)]$. Solution: on pose u'(x) = 1, $v(x) = \ln(x)$, d'où u(x) = x, $v'(x) = \frac{1}{x}$ et alors $\int \ln(x) dx = x \ln(x) - \int x \times \frac{1}{x} dx = x \ln(x) - \int dx$, ce qui donne $\int \ln(x) dx = x \ln(x) - x + \lambda \text{ où } \lambda \text{ est une constante réelle quelconque.}$