2.4.3 Changement de variable

La technique du changement de variable se fonde sur la règle de dérivation d'une fonction composée.

Théorème 2.21. Soient I et J deux intervalles de \mathbb{R} . On suppose que $\varphi: J \longrightarrow \mathbb{R}$ et $h: I \longrightarrow \mathbb{R}$ sont des fonctions dérivables et que l'image de J par φ est contenue dans I (ce qui s'écrit: $\varphi(J) \subset I$). Alors la fonction composée $h \circ \varphi$ est dérivable sur J et on a $(h \circ \varphi)' = (h' \circ \varphi) \times \varphi'$

Théorème 2.22. Soient $f: I \longrightarrow \mathbb{R}$ une fonction continue sur un intervalle $I, \varphi: J \longrightarrow \mathbb{R}$ une fonction de classe C^1 et telle que $\varphi(J) = I$. Alors on a:

- 1. Si F est une primitive de f, alors $F(\varphi(t))$ est une primitive de $f(\varphi(t)) \times \varphi'(t)$. Réciproquement, toute primitive de $f(\varphi(t)) \times \varphi'(t)$ est de la forme $F \circ \varphi$ où F est une primitive de f.
- 2. Si a et b sont deux points de I et α et β sont deux points de J tels que

$$\varphi(\alpha) = a, \ \varphi(\beta) = b \ et \ \varphi([\alpha, \beta]) = [a, b], \ alors \ \int_a^b f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

Exemple 2.23. Calculer l'intégrale suivante: $\int_{0}^{\frac{\pi}{2}} \sqrt{2x+1} dx$.

Solution: Soit $\varphi: [1,4] \longrightarrow \left[0,\frac{3}{2}\right]$ définie par $\varphi(t) = \frac{1}{2}(t-1)$. On a $\varphi'(t) = \frac{1}{2}$; φ est strictement croissante et $\varphi([1,4]) = \left[0,\frac{3}{2}\right]$. En utilisant le théorème précédent, on trouve $\int_{-2}^{\frac{3}{2}} \sqrt{2x+1} dx = \int_{-2}^{4} \frac{1}{2} \sqrt{t} dt$.

Dans la pratique on procède quasi mécaniquement comme suit on fait un changement de variable en posant 2x+1=u, ce qui donne par différentiation membre à membre, $2\mathbf{d}\mathbf{x} = \mathbf{d}\mathbf{u}$, donc $\mathbf{d}\mathbf{x} = \frac{1}{2}\mathbf{d}\mathbf{u}$. Lorsque x = 0, on a u = 1 et lorsque $x = \frac{3}{2}$, on a u = 4. On en déduit: $\int_0^{\frac{3}{2}} \sqrt{2x+1} d\mathbf{x} = \int_1^4 \frac{1}{2} \sqrt{u} d\mathbf{u}$. Une primitive de la fonction usuelle $u \mapsto \sqrt{u}$ est $\frac{2}{3}u^{\frac{3}{2}}$, ce qui donne $\int_{1}^{4} \frac{1}{2} \sqrt{u} du = \frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{1}^{4} = \frac{1}{3} \left[u^{\frac{3}{2}} \right]_{1}^{4}$. Une simple évaluation de $u \mapsto u^{\frac{3}{2}}$ en 4 et 1 nous donne ensuite $\int_{1}^{4} \frac{1}{2} \sqrt{u} du = \frac{7}{3}$. Conclusion: $\int_{0}^{\frac{3}{2}} \sqrt{2x+1} dx = \frac{7}{3}$

Exemple 2.24. Calculer une primitive de la fonction $f:[0,+\infty[\longrightarrow \mathbb{R}$ définie par $f(x)=\frac{x}{2x^2+1}$ Solution: on fait un changement de variable en posant $u = 2x^2 + 1$, ce qui donne du $= 4x \,\mathrm{dx}$. On en déduit $\int \frac{x}{2x^2+1} dx = \int \frac{1}{4} \times \frac{1}{u} du$. Comme $\int \frac{1}{u} du = \ln|u| + \text{cste}$, une primitive de la fonction f définie par $f(x) = \frac{x}{2x^2 + 1}$ est $\frac{1}{4}\ln(2x^2 + 1)$. D'une manière générale, lorsque la fonction f à intégrer est de la forme $f(x) = k\frac{g'(x)}{g(x)}$ où k est une

constante réelle non nulle, on a $\int f(x) dx = k \ln(|g(x)|) + \lambda$, où λ est une constante réelle arbitraire.

A noter: étant donnée $\int_{-\infty}^{\infty} f(x) dx$ à calculer (on suppose f continue), quand on pose $x = \varphi(t)$, il faut déterminer l'intervalle $[\alpha, \beta]$ (attention: il peut arriver que $\alpha > \beta$) tel que:

- φ est continûment dérivable sur $[\alpha, \beta]$
- $\varphi(\alpha) = a, \ \varphi(\beta) = b$
- $\varphi([\alpha,\beta]) = [a,b]$

Dans ces conditions, $\int_{-\delta}^{\delta} f(x) dx = \int_{-\delta}^{\beta} f(\varphi(t)) \times \varphi'(t) dt$

Exemple 2.25. Soit a un nombre réel strictement positif. En faisant le changement de variable u=-xsur l'intervalle [-a, 0], on obtient:

1. Soit f une fonction continue et **paire** définie sur l'intervalle [-a,a]. Alors on a $\int_{-\pi}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$. Par exemple, $\int_{-\pi}^{\frac{\pi}{2}} \cos(x) dx = 2 \int_{0}^{\frac{\pi}{2}} \cos(x) dx = 2$

2. Si f est une fonction continue et impaire définie sur l'intervalle [-a,a], alors on a $\int_{-\pi}^{a} f(x) dx = 0. \text{ Par exemple, } \int_{-\pi}^{\frac{\pi}{2}} \sin(x) dx = 0, \int_{-\pi}^{2} x^{2009} (\sin(x))^{2010} dx = 0.$

Proposition 2.26. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue et périodique de période T.

Alors pour tout $a, b \in \mathbb{R}$, on $a \int_a^b f(x) dx = \int_{a+T}^{b+T} f(x) dx$.

Ce qui donne
$$\int_a^b f(x) dx = \int_{a+T}^{b+T} f(u-T) du$$
.

$$\begin{aligned} \mathbf{D\acute{e}monstration.} & \text{ En faisant le changement de variable } u = x + T, \text{ on a du} = \mathrm{dx}. \\ \mathrm{Ce \ qui \ donne} & \int_a^b f(x) \mathrm{dx} = \int_{a+T}^{b+T} f(u-T) \mathrm{du}. \\ f \ \text{\'e}tant \ \mathrm{p\'eriodique \ de \ p\'eriode} \ T, \text{ on a } f(u-T) = f((u-T)+T) = f(u), \text{ d'où finalement} \\ \int_a^b f(x) \mathrm{dx} &= \int_{a+T}^{b+T} f(u) \mathrm{du}. \end{aligned}$$

Corollaire 2.27. Soit
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 une fonction continue et périodique de période T .
Alors pour tout $x_1, x_2 \in \mathbb{R}$, on a $\int_{x_1}^{x_1+T} f(x) dx = \int_{x_2}^{x_2+T} f(x) dx$.