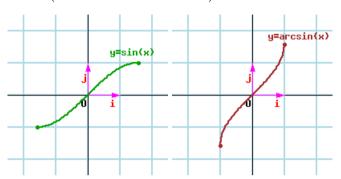
2.4.4 Compléments (fonctions trigonométriques inverses)

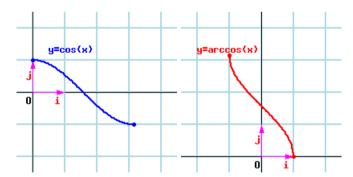
- I. La fonction arcsin: la fonction $x \mapsto \sin(x)$ est monotone (strictement croissante) sur l'intervalle $[\frac{-\pi}{2}, \frac{\pi}{2}]$. On définit alors son inverse, arcsin: $[-1, 1] \longrightarrow [\frac{-\pi}{2}, \frac{\pi}{2}]$, $x \mapsto \arcsin(x)$. Il faut retenir que:
 - 1. le domaine de définition de la fonction arcsinus est [-1,1]

2.
$$y = \arcsin(x) \iff \left(\sin(y) = x \text{ et } \frac{-\pi}{2} \leqslant y \leqslant \frac{\pi}{2}\right)$$



Les graphes de ces deux fonctions sont symétriques par rapport à la droite d'équation y=x. En utilisant les règles de dérivation de fonctions composées, on montre que la fonction $x\mapsto \arcsin(x)$ est dérivable sur]-1,1[et que $(\arcsin(x))'=\frac{1}{\sqrt{1-x^2}}$.

- II. La fonction arccos: la fonction $x \mapsto \cos(x)$ est monotone (strictement décroissante) sur l'intervalle $[0, \pi]$. On définit son inverse, arccos: $[-1, 1] \longrightarrow [0, \pi]$, $x \mapsto \arccos(x)$. Il faut retenir que:
 - 1. le domaine de définition de la fonction arccos est [-1,1]
 - 2. $y = \arccos(x) \iff (\cos(y) = x \text{ et } 0 \leqslant y \leqslant \pi)$



Les graphes de ces deux fonctions se déduisent l'un de l'autre par symétrie orthogonale par rapport à la droite d'équation y=x.

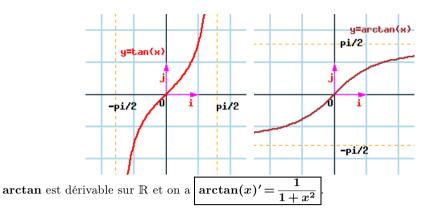
En utilisant les règles de dérivation de fonctions composées, on montre que la fonction $x \mapsto \arccos(x)$ est dérivable sur]-1,1[et que $(\arccos(x))'=-\frac{1}{\sqrt{1-x^2}}.$

III. La fonction arctan: la fonction tangente est monotone (strictement croissante) sur l'intervalle $]\frac{-\pi}{2}, \frac{\pi}{2}[$. L'image de l'intervalle $]\frac{-\pi}{2}, \frac{\pi}{2}[$ par la fonction $x \mapsto \tan(x)$ est $\mathbb R$ tout entier. La fonction inverse (ou encore réciproque) déduite est la fonction

 $\operatorname{arctan}: \mathbb{R} \longrightarrow]\frac{-\pi}{2}, \frac{\pi}{2}[$. Ce qu'il faut retenir:

1. Le domaine de définition de arctan est ${\mathbb R}$

2.
$$y = \arctan(x) \iff \left(\tan(y) = x \text{ et } \frac{-\pi}{2} < y < \frac{\pi}{2}\right)$$



IV. Complément à la liste des primitives des fonctions usuelles:

 λ désignant une constante réelle quelconque, nous avons:

1.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + \lambda$$
2.
$$\int \frac{1}{1+x^2} dx = \arctan(x) + \lambda$$

2.5 Intégrales impropres - Définitions et exemples

Une généralisation de la notion d'intégrale définie.

2.5.1 Intégrales (impropres) sur un intervalle non borné

Définition 2.28. Soient $a \in \mathbb{R}$, $f: [a, +\infty[\longrightarrow \mathbb{R}. \ On \ suppose \ que \ pour \ tout \ b \geqslant a, \ f \ est \ intégrable \ sur \ l'intervalle fermé borné <math>[a,b]$.

On pose alors par définition $\int_a^{+\infty} f(x) dx = \lim_{b \longrightarrow +\infty} \int_a^b f(x) dx$. L'expression $\int_a^{+\infty} f(x) dx$ est appelée intégrale impropre de f sur $[a, +\infty[$.

Si $\lim_{b \to +\infty} \int_a^b f(x) dx$ existe et est un nombre réel, alors l'intégrale impropre $\int_a^{+\infty} f(x) dx$ est dite convergente.

Si
$$\lim_{b \to +\infty} \int_a^b f(x) dx$$
 n'existe pas ou est infinie, alors $\int_a^{+\infty} f(x) dx$ est dite divergente

Exemple 2.29.

1.
$$f: [1, +\infty[\longrightarrow \mathbb{R}, f(x) = \frac{1}{x^2}]$$
.
Pour $b \in [1, +\infty[$, on a f continue sur $[1, b]$ et $\int_1^b f(x) dx = \left[-\frac{1}{x} \right]_1^b = 1 - \frac{1}{b}$.
On en déduit $\lim_{b \longrightarrow +\infty} \int_a^b f(x) dx = 1$, donc $\int_1^{+\infty} f(x) dx = 1$.

2.
$$f: [1, +\infty[\longrightarrow \mathbb{R}, f(x) = \frac{1}{x}]$$
.
On a, pour $b \ge 1$, $\int_{1}^{b} f(x) dx = \left[\ln(x) \right]_{1}^{b} = \ln(b)$. Comme $\lim_{b \longrightarrow +\infty} \ln(b) = +\infty$, on en déduit que l'intégrale impropre $\int_{1}^{+\infty} f(x) dx$ diverge.

3. L'intégrale impropre $\int_0^{+\infty} \cos(x) dx \text{ diverge.}$ En effet $\int_0^b \cos(x) dx = \left[\sin(x) \right]_0^b = \sin(b) \text{ et } \lim_{b \longrightarrow +\infty} \sin(b) \text{ n'existe pas.}$

Définition 2.30. Soient $b \in \mathbb{R}$ et $f:]-\infty, b] \longrightarrow \mathbb{R}$, intégrable sur tout intervalle [a, b], (a < b). De manière analogue à la définition 2.28, on pose par définition $\int_{-\infty}^{b} f(x) dx = \lim_{a \longrightarrow -\infty} \int_{a}^{b} f(x) dx$. L'intégrale impropre $\int_{-\infty}^{b} f(x) dx$ est dite convergente si $\lim_{a \longrightarrow -\infty} \int_{a}^{b} f(x) dx$ existe dans \mathbb{R} , elle est dite divergente sinon.

Exemple 2.31. Calcul de l'intégrale impropre $\int_{-\infty}^{0} -xe^{-x^{2}} dx$. Pour a < 0, on a $\int_{a}^{0} -xe^{-x^{2}} dx = \left[\frac{1}{2}e^{-x^{2}}\right]_{a}^{0} = \frac{1}{2} - \frac{e^{-a^{2}}}{2}$.

Comme $\lim_{a \to -\infty} e^{-a^2} = 0$, on en déduit que $\int_{-\infty}^{0} -xe^{-x^2} dx = \frac{1}{2}$

Définition 2.32. Soit $f:]-\infty, +\infty[\longrightarrow \mathbb{R}$. On suppose f intégrable sur tout fermé borné [a,b]. On définit l'intégrale impropre $\int_{-\infty}^{+\infty} f(x) dx$ de f sur $]-\infty, +\infty[$ comme suit:

- $\int_{-\infty}^{+\infty} f(x) dx \text{ est dite convergente s'il existe un point } c \in]-\infty, +\infty[\text{tel que les deux intégrales impropres } \int_{-\infty}^{c} f(x) dx \text{ et } \int_{c}^{+\infty} f(x) dx \text{ convergent. Dans ce cas } \int_{-\infty}^{+\infty} f(x) dx \text{ a pour valeur } \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx.$
- $\int_{-\infty}^{+\infty} f(x) dx \text{ est dite divergente s'il existe un point } c \in]-\infty, +\infty[\text{tel que l'une au moins des intégrales impropres } \int_{-\infty}^{c} f(x) dx, \int_{c}^{+\infty} f(x) dx \text{ diverge. Dans ce cas, } \int_{-\infty}^{+\infty} f(x) dx \text{ n'a pas de valeur.}$

Exemple 2.33. $\int_{-\infty}^{+\infty} \frac{1}{x^2+1} dx \text{ converge vers } \pi \text{ car } \int_{-\infty}^{0} \frac{1}{x^2+1} dx \text{ converge vers } \frac{\pi}{2} \text{ et } \int_{0}^{+\infty} \frac{1}{x^2+1} dx$ converge aussi vers $\frac{\pi}{2}$. En effet, pour $\alpha < 0$, on a $\int_{\alpha}^{0} \frac{1}{x^2+1} dx = \left[\arctan(x)\right]_{\alpha}^{0} = -\arctan(\alpha).$ Comme (par définition de $\arctan(\alpha) = -\frac{\pi}{2}$, on en déduit le résultat.

2.5.2 Intégrale impropre pour une fonction non bornée

Définition 2.34. Soient $a, b \in \mathbb{R}$, (a < b), $f: [a, b] \longrightarrow \mathbb{R}$ non bornée telle que pour tout $\beta \in [a, b[$, f est intégrable sur $[a, \beta]$.

On définit l'intégrale impropre de f sur [a, b] en posant $\int_a^b f(x) dx = \lim_{\beta \longrightarrow b^-} \int_a^\beta f(x) dx$. De manière analogue, pour $g: [a, b] \longrightarrow \mathbb{R}$ non bornée et intégrable sur tout intervalle fermé borné $[\alpha, b]$ $(a < \alpha \le b)$, on pose $\int_a^b g(x) dx = \lim_{\alpha \longrightarrow a^+} \int_\alpha^b g(x) dx$.

Les intégrales impropres $\int_a^b f(x) dx$ et $\int_a^b g(x) dx$ sont dites convergentes si $\lim_{\beta \longrightarrow b^-} \int_a^\beta f(x) dx$ et $\lim_{\alpha \longrightarrow a^+} \int_{\alpha}^b g(x) dx$ existent dans \mathbb{R} ; elles sont dites divergentes sinon.

Exemple 2.35. Convergence de l'intégrale impropre $\int_0^1 \frac{1}{\sqrt{x}} dx$. Pour $\alpha \in]0,1]$, on a $\int_{\alpha}^1 \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x}\right]_{\alpha}^1 = 2 - 2\sqrt{\alpha}$.

Comme $\lim_{\alpha \longrightarrow 0} \sqrt{\alpha} = 0$, on a que $\int_0^1 \frac{1}{\sqrt{x}} dx$ converge vers la valeur 2.

Définition 2.36. La définition précédente se généralise comme suit: soit $f: [a, b] \longrightarrow \mathbb{R}$, intégrable sur tout intervalle fermé borné $[\alpha, \beta] \subset]a, b[$.

- On dit que l'intégrale impropre $\int_a^b f(x) dx$ converge s'il existe $c \in]a, b[$ tel que les deux intégrales impropres $\int_a^c f(x) dx$ et $\int_c^b f(x) dx$ convergent. Dans ce cas, la valeur de $\int_a^b f(x) dx$ est $\int_a^c f(x) dx + \int_c^b f(x) dx$.
- On dit que l'intégrale impropre $\int_a^b f(x) dx$ diverge s'il existe $c \in]a, b[$ tel que l'une au moins des deux intégrales impropres $\int_a^c f(x) dx$, $\int_a^b f(x) dx$ diverge.