1ère SESSION - 2ème Semestre Filière Eco-Gestion Première Année de Licence (L1) Mathématiques 2 - Unité U5 Enseignant: YAMEOGO J.

CORRIGÉ SUCCINCT DE L'ÉPREUVE ÉCRITE DE MATHÉMATIQUES (les énoncés sont en bleu)

Exercice 1. (6 points)

Soit f la fonction réelle définie sur l'intervalle [-1,2] par $f(x) = \left(1 + \frac{3x}{5}\right)^{\frac{1}{6}}$.

- 1. Calculer f'(x), f''(x) et étudier le signe de f''(x) sur [-1,2]. Solution: On peut commencer par remarquer que l'expression $\left(1+\frac{3x}{5}\right)^{\frac{1}{6}}$ est bien définie si et seulement si $1+\frac{3x}{5}\geqslant 0$, c'est-à-dire $x\geqslant -\frac{5}{3}$. Comme $-\frac{5}{3}<-1$, f est bien définie et dérivable sur [-1,2]. On trouve en appliquant les formules de dérivations usuelles, $f'(x)=\frac{1}{10}\bigg(1+\frac{3x}{5}\bigg)^{-\frac{5}{6}}$ et $f''(x)=-\frac{1}{20}\bigg(1+\frac{3x}{5}\bigg)^{-\frac{11}{6}}$. Nous avons $1+\frac{3x}{5}>0$ sur l'intervalle [-1,2], ce qui donne $\left(1+\frac{3x}{5}\right)^{-\frac{11}{6}}>0$. On en déduit que f''(x) est strictement négatif sur [-1,2].
- 2. L'approximation affine de f en $x_0 = 0$ est une fonction h définie par h(x) = ax + b où a et b sont des nombres réels.
 - a) Calculer les nombres réels a et b dans l'expression h(x) = ax + b. Solution: On a $a = f'(0) = \frac{1}{10}$ et b = f(0) = 1. Ainsi, $h(x) = \frac{1}{10}x + 1$.
 - b) On décide d'utiliser h(1) comme approximation de f(1).

l'approximation de f(1) par h(1) est par excès.

- i. Que vaut h(1)? Solution: De l'expression $h(x) = \frac{1}{10}x + 1$ on déduit $h(1) = \frac{11}{10} = 1$, 10.
- ii. Sachant que la formule de Mac-Laurin dit qu'il exite $c \in]0, 1[$ tel que $f(1) = h(1) + \frac{f''(c)}{2}$, l'approximation de f(1) par h(1) est-elle par défaut ou par excès? Justifiez votre réponse. Solution: Comme on a $\frac{f''(c)}{2} < 0$, on en déduit que f(1) < h(1), donc

1

Exercice 2. (6 points) Soient f, g et h les fonctions réelles données par les formules $f(x) = \frac{8}{\sqrt{1+x}}$, $g(x) = \ln(2-x)$, $h(x) = f(x) \times g(x)$.

- 1. Déterminer le domaine de définition de chacune des fonctions f,g et h. Solution: f a pour domaine $D(f) =]-1, +\infty[$. g a pour domaine $D(g) =]-\infty, 2[$. Le domaine de définition de h est l'intersection $D(f) \cap D(g) =]-1, 2[$.
- 2. Calculer le développement limité de f à l'ordre 2 en $x_0=0$. (indication: on pourra remarquer que $f(x)=8\times(1+x)^{-\frac{1}{2}}$) Solution: En utilisant les formules de développements limités des fonctions usuelles on trouve: $(1+x)^{-\frac{1}{2}}=1-\frac{1}{2}x+\frac{3}{8}x^2+o(x^2)$. On en déduit $f(x)=8-4x+3x^2+o(x^2)$.
- 3. Des calculs supposés justes donnent $g(0) = \ln(2)$, $g'(0) = -\frac{1}{2}$ et $g''(0) = -\frac{1}{4}$. En déduire le développement limité à l'ordre 2 en $x_0 = 0$ de g puis de h. Solution: en utilisant les données on obtient $g(x) = \ln(2) \frac{1}{2}x \frac{1}{8}x^2 + o(x^2)$. Comme h est la fonction produit de f et g, en utilisant les développements limités à l'ordre 2 de f et g on calcule facilement le développement limité à l'ordre 2 de h. On obtient $h(x) = 8\ln(2) 4(\ln(2) + 1)x + (1 + 3\ln(2))x^2 + o(x^2)$.
- 4. Donner une équation de la tangente au graphe de h en (0,h(0)) et étudier la position de cette tangente par rapport au graphe au voisinage de (0,h(0)). Solution: En utilisant le développement limité trouvé dans la question 3. ci-dessus, on trouve que la tangente au graphe de h en (0,h(0)) admet pour équation $y = 8\ln(2) 4(\ln(2) + 1)x$. Comme on a $(1+3\ln(2))>0$, on peut dire que cette tangente est en dessous du graphe de h au voisinage de (0,h(0)).

Exercice 3. (3 points)

- 1. Calculer le domaine de définition et une primitive de la fonction $x\mapsto \frac{1}{\sqrt{x}}$. Solution: La fontion $x\mapsto \frac{1}{\sqrt{x}}$ est défini sur $]0,+\infty[$ et admet pour primitive la fonction $x\mapsto 2\sqrt{x}$.
- $\begin{array}{l} \textbf{2. Calculer l'intégrale définie } I = \int_{10}^{1000} \sqrt{\frac{1000}{x}} \mathrm{dx.} \\ & \text{Solution: On a } \sqrt{\frac{1000}{x}} = \sqrt{1000} \times \frac{1}{\sqrt{x}}, \ \mathrm{donc} \ x \mapsto \sqrt{\frac{1000}{x}} \ \mathrm{admet \ pour \ primitive} \\ & x \mapsto 2\sqrt{1000 \, x}. \ \mathrm{On \ en \ déduit} \ I = 2 \Big[\sqrt{1000 x} \Big]_{10}^{1000} = 2(1000 100) = 1800. \end{array}$

2

Exercice 4. (5 points)

Soit $f: [0, +\infty[\longrightarrow \mathbb{R} \text{ la fonction réelle définie par } f(x) = (10x+5)e^{-\frac{1}{2}x}$.

1. Calculer $\int_0^{10} f(x) dx$.

Solution: On fait une intégration par parties en posant u(x) = 10x + 5 et $v'(x) = e^{-\frac{1}{2}x}$, de sorte que u'(x) = 10 et $v(x) = -2e^{-\frac{1}{2}x}$ (par exemple).

On en déduit $\int_0^{10} f(x) dx = \left[-2(10x+5)e^{-\frac{1}{2}x} \right]_0^{10} + 20 \int_0^{10} e^{-\frac{1}{2}x} dx.$

D'où finalement $\int_0^{10} f(x) dx = \left[-2(10x + 25)e^{-\frac{1}{2}x} \right]_0^{10} = 50 - 250e^{-5}$.

2. Pour $b \in [0, +\infty[$ on pose $I(b) = \int_0^b f(x) dx$. Calculer $\lim_{b \to +\infty} I(b)$. Que peut-on dire de l'intégrale impropre $\int_0^{+\infty} f(x) dx$? (indication: on pourra utiliser le fait que pour tout réel α strictement négatif et pour tout polynôme P, on a $\lim_{t\to +\infty} e^{\alpha t} \times P(t) = 0$). Solution: En utilisant les calculs de la question 1. ci-dessus, on trouve que f(x) admet pour

primitive la fonction $x \mapsto -2(10x+25)e^{-\frac{1}{2}x}$.

On en déduit que $I(b) = 50 - 2(10b + 25)e^{-\frac{1}{2}b}$. On a $\lim_{b \to +\infty} I(b) = 50$, ce qui signifie que l'intégrale impropre $\int_0^{+\infty} f(x) dx$ converge vers 50.